(a+b+c+d)^4 Formula

6 min read Jul 03, 2024
(a+b+c+d)^4 Formula

The Formula for (a+b+c+d)^4

When working with algebraic expressions, it's often necessary to expand powers of a binomial or a multinomial. In this article, we'll explore the formula for (a+b+c+d)^4, where a, b, c, and d are variables.

The Binomial Theorem

Before diving into the formula for (a+b+c+d)^4, let's recall the binomial theorem. The binomial theorem states that:

$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

where $\binom{n}{k}$ represents the number of combinations of $n$ items taken $k$ at a time.

Multinomial Theorem

The multinomial theorem is an extension of the binomial theorem to more than two variables. It states that:

$(a+b+c+d)^n = \sum_{k_1+k_2+k_3+k_4=n} \binom{n}{k_1, k_2, k_3, k_4} a^{k_1} b^{k_2} c^{k_3} d^{k_4}$

where $\binom{n}{k_1, k_2, k_3, k_4}$ represents the number of combinations of $n$ items taken $k_1, k_2, k_3, k_4$ at a time.

The Formula for (a+b+c+d)^4

Using the multinomial theorem, we can derive the formula for (a+b+c+d)^4 as follows:

$(a+b+c+d)^4 = \sum_{k_1+k_2+k_3+k_4=4} \binom{4}{k_1, k_2, k_3, k_4} a^{k_1} b^{k_2} c^{k_3} d^{k_4}$

There are 15 possible combinations of $k_1, k_2, k_3, k_4$ that add up to 4:

$k_1$ $k_2$ $k_3$ $k_4$ $\binom{4}{k_1, k_2, k_3, k_4}$
4 0 0 0 1
3 1 0 0 4
3 0 1 0 4
3 0 0 1 4
2 2 0 0 6
2 1 1 0 12
2 1 0 1 12
2 0 2 0 6
2 0 1 1 12
2 0 0 2 6
1 3 0 0 4
1 2 1 0 12
1 2 0 1 12
1 1 2 0 12
1 1 1 1 24
1 0 3 0 4
1 0 2 1 12
1 0 1 2 12
1 0 0 3 4
0 4 0 0 1
0 3 1 0 4
0 3 0 1 4
0 2 2 0 6
0 2 1 1 12
0 2 0 2 6
0 1 3 0 4
0 1 2 1 12
0 1 1 2 12
0 0 4 0 1
0 0 3 1 4
0 0 2 2 6
0

Related Post


Featured Posts