1/(a^2-x^2)^1/2 Integral

3 min read Jul 18, 2024
1/(a^2-x^2)^1/2 Integral

Integral of 1/(a^2-x^2)^1/2

The integral of 1/(a^2-x^2)^1/2 is a classic example of a trigonometric substitution problem. In this article, we will explore the steps to evaluate this integral.

The Problem

The given integral is:

$\int \frac{1}{\sqrt{a^2-x^2}} dx$

Trigonometric Substitution

The key to evaluating this integral is to use the trigonometric substitution:

$x = a \sin(u)$

This substitution will allow us to rewrite the integral in terms of the variable $u$.

Rewriting the Integral

Using the substitution, we get:

$dx = a \cos(u) du$

Substituting this into the original integral, we get:

$\int \frac{1}{\sqrt{a^2-x^2}} dx = \int \frac{1}{\sqrt{a^2 - a^2 \sin^2(u)}} a \cos(u) du$

Simplifying the expression under the radical, we get:

$\sqrt{a^2 - a^2 \sin^2(u)} = \sqrt{a^2 \cos^2(u)} = a \cos(u)$

So, the integral becomes:

$\int \frac{1}{a \cos(u)} a \cos(u) du$

Evaluating the Integral

The integral simplifies to:

$\int 1 du = u + C$

Back-Substitution

Now, we need to substitute back in terms of the original variable $x$. We know that:

$x = a \sin(u)$

So, we get:

$u = \sin^{-1}(\frac{x}{a})$

Substituting this back into the result, we get:

$\int \frac{1}{\sqrt{a^2-x^2}} dx = \sin^{-1}(\frac{x}{a}) + C$

Conclusion

In this article, we have seen how to evaluate the integral of 1/(a^2-x^2)^1/2 using a trigonometric substitution. The final result is an inverse sine function.

Featured Posts